Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Over a hundred gravitational-wave (GW) detections and candidates have been reported from the first three observing runs of the Advanced LIGO-Virgo-KAGRA (LVK) detectors. Among these, the most intriguing events are binary black hole mergers that result in a “lite” intermediate-mass black hole (IMBH) of ∼102M⊙, such as GW170502 and GW190521. In this study, we investigate 11 GW candidates from LVK’s third observing run with total detector-frame masses in the lite IMBH range. Using the Bayesian inference algorithmRIFT, we systematically analyze these candidates with three state-of-the-art waveform models that incorporate higher harmonics, which are crucial for resolving lite IMBHs in LVK data. For each candidate, we infer the premerger and postmerger black hole masses in the source frame, along with black hole spin projections across all three models. Under the assumption that these are binary black hole mergers, our analysis finds that five have a postmerger lite IMBH with masses ranging from 110 to 350M⊙with over 90% confidence interval. Additionally, we note that one of their premerger black holes is within the pair-instability supernova mass gap (60–120M⊙), and two premerger black holes are above the mass gap. Furthermore, we report discrepancies among the three waveform models in intrinsic parameters, with at least three GW candidates showing deviations beyond accepted statistical limits. While the astrophysical certainty of these candidates cannot be established, our study provides a foundation to probe the lite IMBH population that emerge within the low-frequency noise spectrum of LVK detectors.more » « lessFree, publicly-accessible full text available May 28, 2026
-
ABSTRACT We examine the galactic chemical evolution (GCE) of $^4$He in one-zone and multizone models, with particular attention to theoretical predictions of and empirical constraints on initial mass fraction (IMF)-averaged yields. Published models of massive star winds and core collapse supernovae span a factor of 2–3 in the IMF-averaged $^4$He yield, $$y\mathrm{_{He}^{CC}}$$. Published models of intermediate mass, asymptotic giant branch (AGB) stars show better agreement on the IMF-averaged yield, $$y\mathrm{_{He}^{AGB}}$$, and they predict that more than half of this yield comes from stars with $$M=4{\!-\!}8\, \mathrm{ M}_\odot$$, making AGB $^4$He enrichment rapid compared to Fe enrichment from Type Ia supernovae. Although our GCE models include many potentially complicating effects, the short enrichment time delay and mild metallicity dependence of the predicted yields makes the results quite simple: across a wide range of metallicity and age, the non-primordial $^4$He mass fraction $$\Delta Y = Y-Y_{\mathrm{P}}$$ is proportional to the abundance of promptly produced $$\alpha$$-elements such as oxygen, with $$\Delta Y/Z_{\mathrm{O}}\approx (y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}})/y\mathrm{_{O}^{CC}}$$. Reproducing solar abundances with our fiducial choice of the oxygen yield $$y\mathrm{_{O}^{CC}}=0.0071$$ implies $$y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}}\approx 0.022$$, i.e. $$0.022\,\mathrm{ M}_\odot$$ of net $^4$He production per solar mass of star formation. Our GCE models with this yield normalization are consistent with most available observations, though the implied $$y\mathrm{_{He}^{CC}}$$ is low compared to most of the published massive star yield models. More precise measurements of $$\Delta Y$$ in stars and gas across a wide range of metallicity and [$$\alpha$$/Fe] ratio could test our models more stringently, either confirming the simple picture suggested by our calculations or revealing surprises in the evolution of the second most abundant element.more » « less
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available October 22, 2026
-
Dehnel’s phenomenon describes a seasonal and reversible winter decrease in body size, which is a trait that predicts total energy demand. However, the phenomenon remains less well- studied than common energy-saving or energy-seeking strategies of mammals. Here, we explore the generality of Dehnel’s phenomenon in Sorex shrews on three continents. First, we use new field sampling to document seasonal phenotypic change in masked shrews (Sorex cinereus) in North America at the lowest latitude yet investigated for this species (35.7°). This includes the first documentation of appendicular skeleton remodification in Sorex. Summer-to- winter decreases in S. cinereus body mass, braincase height, and femur length were 13%, 11.5%, and 8.7%, respectively, with subsequent increases of each in second-year individuals. Second, we compile a comprehensive dataset of Dehnel’s-relevant studies to test whether seasonal plasticity in Sorex globally is related to climate, demonstrating that body and braincase plasticity are functions of cold season temperatures. Meta-analytical models for both these traits generalized by a) applying at both inter- and intraspecific scales, and b) predicting the seasonal change newly observed for S. cinereus. Our results support body size plasticity as an environmentally-responsive innovation in these very small, homeothermic mammals.more » « lessFree, publicly-accessible full text available January 29, 2026
-
GiussodelGaldo, Gian Pietro (Ed.)During a survey by the National Tropical Botanical Garden drone team, an enigmatic Schiedea was observed in December 2021on steep, rocky cliff faces of the Waiahulu Valley in the Waimea Canyon of Kaua'i. Subsequently, another survey was conducted in March 2022 and, by use of a remotely controlled cutting device suspended below the drone, the first herbarium specimen was collected, as well as a seed collection of an undescribed cliff-dwelling species of Schiedea. Detailed study of the collections and plants grown at the University of California, Irvine greenhouse showed that it had enlarged, somewhat whitish sepals similar to those of cliff-dwelling S. attenuata (the sole species in sect. Leucocalyx), yet differed significantly from all other species in the genus. It also shares with S. attenuata a woody habit, hermaphroditic flowers, coloured nectar and styles 5 to 7 or 8. We describe it here as S. waiahuluensis given the only known localities are on the cliffs of this valley and place it in an enlarged sect. Leucocalyx. With the discovery of this new species, there are 36 species in this Hawaiian endemic genus.more » « less
-
The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal RichAbstract Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor anequilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining with increasing Galactocentric radius.more » « lessFree, publicly-accessible full text available July 10, 2026
-
Suspended finite ground coplanar waveguide (FG-CPW) interconnects, fabricated with laser-enhanced direct print additive manufacturing (AM), are modeled and characterized in this work. The study focuses on the variation of characteristic impedance and attenuation with design geometry. Acrylonitrile butadiene styrene (ABS) is printed with fused deposition modeling (FDM) to form 10-mm-long suspended ABS bridges and Dupont CB028 is microdispensed to realize conductive traces on the ABS bridges. Femtosecond pulsed laser machining in the ultraviolet range is combined with the AM to create gaps ranging from 8 to 92 μ m in width on either side of a signal line to define the FG-CPW. Three different suspended interconnects are designed, where the total linewidth (signal line plus gaps) is kept constant at 300 μ m for all designs, but the aspect ratio (AR) (signal linewidth divided by total linewidth) is varied. Two multiline thru–reflect–line calibrations are performed to measure each design: one uses printed calibration standards and the other employs a commercial calibration substrate. The attenuation of the interconnects at 30 GHz is 0.28, 0.13, and 0.06 dB/mm for ARs of 0.95, 0.87, and 0.38, respectively. The laser machining of the gaps results in partial substrate removal, which increases the characteristic impedance by approximately 11%. The impact of fabrication tolerances is examined.more » « less
An official website of the United States government
